Nanoscale Calibration Standards and Methods

Edited by

G. Wilkening, L. Koenders
Nanoscale Calibration
Standards and Methods

Dimensional and Related Measurements in the Micro- and Nanometer Range

Edited by
Günter Wilkening, Ludger Koenders
Contents

Part I Instrumentation – Overview

1 Metrological Scanning Probe Microscopes – Instruments for Dimensional Nanometrology 3
Hans-Ulrich Danzebrink, Frank Pohlenz, Gaoliang Dai, and Claudio Dal Savio
1.1 Introduction 3
1.2 High-Resolution Probing Systems 4
1.2.1 Sensor Objective with Beam Deflection Detection 5
1.2.2 Sensor Objective with Piezolever Module 7
1.2.3 Sensor Objective with Tuning Fork Module 8
1.2.4 Sensor Head for Combined Scanning Probe and Interference Microscopy 9
1.3 Metrology Systems Based on Scanning Probe Microscopes 12
1.3.1 Scanning Force Microscopes of Type Veritekt 13
1.3.2 Metrological Large Range Scanning Force Microscope 15
1.4 Summary 18
Acknowledgments 19
References 19

2 Nanometrology at the IMGC 22
M. Bisi, E. Massa, A. Pasquini, G. B. Picotto, and M. Pisani
2.1 Introduction 22
2.2 Surface Metrology 23
2.2.1 Scanning Probe Microscopy 23
2.2.2 Optical Diffractometry 25
2.2.3 Stylus Profilometry 27
2.3 Atomic Scale Metrology 28
2.3.1 Lattice Parameter of Silicon 29
2.3.2 Combined Optical and X-Ray Interferometry (COXI) 30
2.4 Phase-Contrast Topography 31
2.4.1 Detection of Small Lattice Strain 31
2.4.2 Phase-Contrast Imaging 32
3 Metrological Applications of X-ray Interferometry 38
Andrew Yacoot
3.1 Introduction 38
3.2 Measurement of Non-linearity in Optical Interferometers 40
3.3 Combined Optical and X-ray Interferometry 41
3.4 Measurement of Small Angles 42
3.5 X-ray Interferometry and Scanning Probe Microscopy 43
3.6 Conclusions 43
References 44

Part II Instrumentation – Long-range Scanning Probe Microscope

4 Advances in Traceable Nanometrology with the Nanopositioning and Nanomeasuring Machine 47
Eberhard Manske, Rostislav Mastylo, Tino Hausotte, Norbert Hofmann, and Gerd Jäger
4.1 Introduction 47
4.2 Design and Operation 48
4.3 Uncertainty Budget 52
4.4 Focus Sensor 53
4.5 Measuring Opportunities and Performance with Focus Sensor 55
4.6 Focus Probe with SFM Cantilever 58
4.7 Conclusion 58
Acknowledgements 59
References 59

5 Coordinate Measurements in Microsystems by Using AFM-Probing: Problems and Solutions 60
Dorothee Hüser, Ralph Petersen, and Hendrik Rothe
5.1 Introduction 60
5.2 Realizing CMMs for Microsystems 61
5.3 Problems and Solutions 64
5.3.1 Dynamics of Positioning System 64
5.3.2 CMM: One-Millimeter Scan 67
5.3.3 Measuring Strategies 68
5.4 Conclusion and Outlook 71
References 72
6 Metrological Large Range Scanning Force Microscope Applicable for Traceable Calibration of Surface Textures 73

Gaoliang Dai, Frank Pohlenz, Hans-Ulrich Danzebrink, Min Xu, Klaus Hasche, Günther Wilkening

6.1 Introduction 74
6.2 Instrumentation 75
6.2.1 Principle 75
6.2.2 Metrological Properties 76
6.2.3 Traceability 78
6.2.4 Specially Designed Features 79
6.3 Measurement Result of a 2D-Grating Standard 80
6.3.1 Measurement Strategy 80
6.3.2 Data Evaluation 82
6.3.3 Measurement Result of the Mean Pitch Value 83
6.3.4 Measurement of the Local Pitch Variation 83
6.4 A Selected Measurement Result of a Microroughness Standard 85
6.4.1 Measurement Result of a Glass Flatness Standard 86
6.4.2 Measurement of a PTB Microroughness Standard 87
6.4.3 Comparison of the Roughness Measurement Results Derived from SFM and Stylus Instruments Using Gaussian Filter 88
6.4.4 Comparison Using Morphological Filters 89
6.4.5 Evaluation Results Using PTB Reference Software 90
6.5 Outlook and Conclusion 91
References 92

Part III Instrumentation – Development of SPM and Sensors

7 Traceable Probing with an AFM 95
K. Dirscherl and K. R. Koops
7.1 Introduction 95
7.2 Setup 96
7.3 Correction for Piezo Nonlinearities 100
7.3.1 Hysteresis 100
7.3.2 Drift 102
7.4 Real-Time Control Through SSE2 Assembly 103
7.4 Implementation of the Measurement Controller 104
7.6 Image Analysis 105
7.7 Conclusions 107
Acknowledgments 108
References 108

8 Scanning Probe Microscope Setup with Interferometric Drift Compensation 109
Andrzej Sikora, Dmitri V. Sokolov, and Hans U. Danzebrink
8.1 Motivation 109
14 True Three-Dimensional Calibration of Closed Loop Scanning Probe Microscopes 193
J. Garnaes, A. Kühle, L. Nielsen, and F. Borsetto
14.1 Introduction 193
14.2 Model of the Measurement System 194
14.3 The Correction Matrix 195
14.4 Theory for Estimating the Vertical Skew 196
14.5 Experimental Results and Discussion 200
14.6 Conclusion 202
Acknowledgements 202
Appendix 203
References 204

15 Height and Pitch at Nanoscale – How Traceable is Nanometrology? 205
L. Koenders and F. Meli
15.1 Introduction 205
15.2 Comparison on One-Dimensional Pitch Standards (NANO 4) 206
15.2.1 Standards and Measurand 206
15.2.2 Participants and Measurement Methods 207
15.2.3 Results 208
15.2.4 Uncertainty 210
15.2.5 Discussion 211
15.3 Comparison on Step Height (NANO4) 212
15.3.1 Standards 212
15.3.2 Measurement Methods 213
15.3.3 Results 214
15.3.4 Uncertainties 216
15.3.5 Discussion 217
15.4 Conclusions 218
Acknowledgment 218
References 219

16 The Behavior of Piezoelectric Actuators and the Effect on Step-Height Measurement with Scanning Force Microscopes 220
A. Grant, L. McDonnell, and E. M. Gil Romero
16.1 Introduction 220
16.2 Experimental 222
16.2.1 Scanning Force Microscopes 222
16.2.2 Z Calibration with Step-Height Standards 223
16.2.3 Z Calibration with Fiber-Optic Displacement Sensor 223
16.3 Results 224
16.3.1 Effect of Voltage Sweep 224
16.3.2 Effect of Z Actuator Offset 225
16.3.3 Implications of Actuator Offset for Sample Tilt 227
16.3.4 Implications of Actuator Offset for Scanner Curvature 227
20 Investigations of Nanoroughness Standards by Scanning Force Microscopes and Interference Microscope 269
R. Krüger-Sehm, T. Dziomba, and G. Dai
20.1 Introduction 269
20.2 Standardization Aspects 270
20.3 Manufacturing of Calibration Specimens 271
20.3.1 Conditions for Smaller Roughness 271
20.3.2 Manufacturing Process 272
20.3.3 Profile Repetition 273
20.4 Measurements 274
20.4.1 Identification of the Fields of Interest 274
20.4.2 Correlation of Fields 274
20.4.3 Measurements with Interference Microscope 275
20.4.4 Scanning Force Microscope Measurements 276
20.4.5 Long Range SFM Measurements 278
20.4.6 Relation to Proven Roughness Standards 279
20.5 Conclusions and Outlook 279
Acknowledgments 281
References 281

21 Testing the Lateral Resolution in the Nanometre Range with a New Type of Certified Reference Material 282
M. Senoner, Th. Wirth, W. Unger, W. Österle, I. Kaiander, R. L. Sellin, and D. Bimberg
21.1 Introduction 282
21.2 Description of the Reference Material 283
21.3 Modeling of Lateral Resolution 284
21.3.1 Analysis of a Narrow Strip 288
21.3.2 Analysis of a Straight Edge 289
21.3.3 Analysis of Gratings 291
21.4 Conclusions 294
Acknowledgments 294
References 294

Part VI Calibration – Tip shape

22 Reconstruction and Geometric Assessment of AFM Tips 297
Torsten Machleidt, Ralf Kästner, and Karl-Heinz Franke
22.1 Introduction 298
22.2 Reconstruction of the Tactile Tip 299
22.2.1 Imaging the Tip Using Scanning Electron Microscopy 299
22.2.2 Reconstruction by Known Sample Structure 300
22.2.3 Blind Tip Estimation 301
22.2.4 Motivation 301
22.2.5 Tip Assessment 302
25.2.1 Two Waves Interferometry 332
25.2.2 Multiple Waves Interferometry 337
25.3 Statistical Errors on Processing Elementary Fringe Patterns 337
25.4 Wavelengths and Displacements Measurement 340
25.5 Absolute Distance Measurement 341
25.6 Conclusions 343
References 344

26 Uncertainty Analysis of the PTB Measuring Equipment for the Investigation of Laser Interferometers 345
G. Sparrer and A. Abou-Zeid

26.1 Introduction 345
26.2 The Calibration Facility 346
26.3 Measurement Procedure 348
26.4 The Uncertainty of the Complete Calibration Facility 349
26.4.1 The Measurement Uncertainty of the Comparator 349
26.4.2 The Measurement Uncertainty of the Standard Laser Interferometer Taking Into Account the Refractive Index of Air and the Thermal Expansion 352
26.4.3 The Expanded Measurement Uncertainty of the Entire Calibration Facility 355

Signs and Symbols of the Model Equations and the Uncertainty Budgets: 356
References 357

Part VIII Application – Lateral Structures

27 Lateral and Vertical Diameter Measurements on Polymer Particles with a Metrology AFM 361
F. Meli

27.1 Introduction 361
27.2 Experimental Setup 363
27.3 Measurement Results and Discussion 365
27.3.1 Height Measurements on Gold Colloids 365
27.3.2 Possible Systematic Deviations with Height Measurements on Gold Colloids 368
27.3.3 Lateral Measurements on Polymer Spheres 370
27.4 Conclusion 374
References 374

28 Pitch and CD Measurements at Anisotropically Etched Si Structures in an SEM 375
C. G. Frase, S. Czerkas, H. Bosse, Yu. A. Novikov, and A. V. Rakov

28.1 Introduction 376
28.2 GWPS Specimen 376
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.3</td>
<td>SEM Instrumentation</td>
<td>377</td>
</tr>
<tr>
<td>28.4</td>
<td>SEM image formation and Modeling</td>
<td>377</td>
</tr>
<tr>
<td>28.5</td>
<td>SEM Measurement Method</td>
<td>381</td>
</tr>
<tr>
<td>28.6</td>
<td>Measurement Results</td>
<td>382</td>
</tr>
<tr>
<td>28.7</td>
<td>Conclusion</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>384</td>
</tr>
</tbody>
</table>

| 29      | Analysis and Comparison of CD-SEM Edge Operators: A Contribution to Feature Width Metrology | 385  |
|         | C.G. Frase, W. Häßler-Grohne, E. Buhr, K. Hahm, and H. Bosse |      |
| 29.1    | Introduction | 385  |
| 29.2    | Exponential Fit Operator | 387  |
| 29.2.1  | Secondary Electron Image Formation at Structural Edges | 387  |
| 29.2.2  | Definition of Top CD Operator | 390  |
| 29.2.3  | SEM Model Input Parameter Variations | 390  |
| 29.2.4  | Experimental Parameter Variations | 392  |
| 29.2.5  | Measurement Results | 393  |
| 29.3    | Modified Exponential Fit Operator for High Sidewall Angles | 394  |
| 29.4    | Gauss Fit Operator | 396  |
| 29.5    | Signal Decay Operator | 398  |
| 29.6    | Conclusion | 402  |
|         | References | 403  |

| 30      | Measurement of High-Resolution Interferential Encoders Using the PTB Nanometer Comparator | 404  |
|         | J. Flügge, R. Koening, and H. Bosse |      |
| 30.1    | Principle | 404  |
| 30.2    | Laser Interferometer | 405  |
| 30.3    | Incremental Linear Encoders | 406  |
| 30.4    | Measurement Results | 408  |
|         | References | 409  |

Part IX Application -- Surface

| 31      | Experimental Characterization of Micromilled Surfaces by Large-Range AFM | 413  |
|         | P. Bariani, G. Bissacco, H. N. Hansen, and L. De Chiffre |      |
| 31.1    | Introduction | 413  |
| 31.2    | Micromilling of Hardened Tool Steel | 414  |
| 31.3    | Surface Topography Measurement | 415  |
| 31.4    | Large-Range Atomic Force Microscopy | 416  |
| 31.5    | Techniques Used for Comparison | 416  |
| 31.6    | Evaluation of Sampling Conditions for the Different Techniques | 417  |
| 31.7    | Results | 418  |
| 31.8    | Discussion and Conclusions | 422  |
References 423

32 Investigation of the Surface Roughness Measurement of Mass Standards 424
C. Zerrouki, L.R Pendrill, J. M. Bennett, Y. Haidar, F. de Fornel, and P. Pinot

32.1 Introduction 424
32.2 Requirements for Surface Roughness of Mass Standards 425
32.3 Surface Roughness Measurement Methods Applied to Mass Standards 426

32.3.1 Mechanical Profiler (NAWC-US) 427
32.3.2 Near Field Microscope (LPUB, FR) 427
32.3.3 Angle-Resolved Light Scattering (BNM-INM, FR) 428
32.3.4 Angle-Resolved Light Scattering (Lasercheck, US) 428
32.3.5 Total Integrated Light Scattering (SP, SE) 429
32.4 Results and Instruments Comparison 429
32.5 Conclusion 432
References 433

33 Surface Analysis of Precision Weights for the Study of Commonly Occurring Contaminants 434
Ulf Jacobsson and Peter Sjövall

33.1 Introduction 434
33.2 Experimental 435
33.3 Results 438
33.4 Discussion and Conclusions 442
References 442

34 Tip-Shape Effect on the Accuracy of Capacitance Determination by Scanning Capacitance Microscopes 443
Štefan Lányi

34.1 Introduction 443
34.2 Probe geometry 445
34.3 Simulated topographic Artifacts 446
34.4 Results 447
34.5 Discussion 450
References 451

35 Atomic Force Microscope Tip Influence on the Fractal and Multi-Fractal Analyses of the Properties of Randomly Rough Surfaces 452
P. Klapetek, I. Ohlídal, and J. Bilek

35.1 Introduction 452
35.2 Data Simulation and Processing 453
35.3 Fractal Properties Analysis 454
35.4 Multi-Fractal Properties Analysis 457
35.5 Results and Discussion 460
Part X Application – Material Properties

36 Atomic Force Microscope Indentation Measurement Software 465

David Shuman

36.1 Introduction 465
36.2 Experimental Details 468
36.2.1 Sample Preparation 469
36.2.2 Indentation Procedure 469
36.2.3 AFM Calibration 469
36.2.4 Surface Height and Roughness 470
36.2.5 Projected Area 470
36.2.6 Projected Area 473
36.2.7 Surface Area 473
36.2.8 Elastic Reconstruction 474
36.2.9 Building the Area Functions 475
36.2.10 Indenter Angle and Radius 476
36.2.11 NanoMc Hardness 477
36.3 Conclusion 479

Acknowledgments 479
References 480

37 Nanodeformation Analysis Near Small Cracks by Means of NanoDAC Technique 481

Jürgen Keller, Dietmar Vogel, and Bernd Michel

37.1 Introduction 481
37.2 Digital Image Correlation on SPM Images 482
37.2.1 Principle of NanoDAC 482
37.2.2 Stability Aspects of SPM Measurements 484
37.3 Crack Evaluation 488
37.3.1 Experimental Setup 488
37.3.2 Crack Opening Displacement Analysis 489
37.4 Adaptation to Finite Element Analysis 491
37.4.1 Adaptation Concept 491
37.4.2 Mesh Transfer from FEA to Experiment 493
37.4.3 Verification Platform 494
Derotation and Displacement Matching 494
Determination of Material Properties 495
37.5 Application of DIC to Micromachined Gas Sensor 496
37.6 Conclusions 498

Acknowledgments 498
References 498
# List of Contributors

## Chapter 1
H.-U. Danzebrink, F. Pohlenz, G. Dai, and C. Dal Savio  
National Metrology Institute (PTB),  
Braunschweig, Germany  
Hans-Ulrich.Danzebrink@ptb.de

## Chapter 2
M. Bisi, E. Massa, A. Pasquini,  
G. B. Picotto, and M. Pisani  
CNR – Institute of Metrology  
“G. Colonnetti”, Torino, Italy  
g.picotto@imgc.cnr.it

## Chapter 3
A. Yacoot  
National Physical Laboratory,  
Teddington, Middlesex, UK  
Andrew.Yacoot@npl.co.uk

## Chapter 4
E. Manske, R. Mastylo, T. Hausotte,  
N. Hofmann, and G. Jäger  
Technical University Ilmenau,  
Institute of Process- and Sensor Engineering, Ilmenau, Germany  
eberhard.manske@tu-ilmenau.de

## Chapter 5
D. Hüser, R. Petersen, and H. Rothe  
Measurement and Information Technology, University of the Federal Armed Forces, Hamburg, Germany  
doro@unibw-hamburg.de

## Chapter 6
G. Dai, F. Pohlenz, H.-U. Danzebrink,  
M. Xu, K. Hasche, and G. Wilkening  
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany  
gaoliang.dai@ptb.de

## Chapter 7
K. Dirscherl\(^1\) and K. R. Koops\(^2\)  
\(^1\)National Metrology Institute (PTB),  
Braunschweig, Germany  
\(^2\)Nederlands Meetinstituut, Van Swinderen Laboratorium (NMi-VSL),  
Delft, The Netherlands  
kai.dirscherl@ptb.de

## Chapter 8
A. Sikora, D. V. Sokolov, and  
H. U. Danzebrink  
National Metrology Institute (PTB),  
Braunschweig, Germany  
Hans-ulrich.danzebrink@ptb.de

## Chapter 9
G. Dai, F. Pohlenz, H.-U. Danzebrink,  
K. Hasche, and G. Wilkening  
National Metrology Institute (PTB),  
Braunschweig, Germany  
gaoliang.dai@ptb.de
List of Contributors

Chapter 10
D. V. Sokolov, D. V. Kazantsev,
J. W.G. Tyrrell, T. Hasek, and H.-U.
Danzebrink
National Metrology Institute (PTB),
Braunschweig, Germany
hans-ulrich.danzebrink@ptb.de

Chapter 11
A. Sikora, T. Gotszalk, and R. Szeloch
Faculty of Microsystems Electronics
and Photonics, Wroclaw University
of Technology, Poland
andrzej.sikora@pwr.wroc.pl

Chapter 12
L. Doering¹, E. Peiner², V. Nesterov¹,
and U. Brand¹
¹National Metrology Institute (PTB),
Braunschweig, Germany,
²Institute for Semiconductor
Technology, Technical University of
Braunschweig, Germany
Lutz.Doering@ptb.de

Chapter 13
T. Dziomba, L. Koenders, and
G. Wilkening
National Metrology Institute (PTB),
Braunschweig/Berlin, Germany
Thorsten.Dziomba@ptb.de

Chapter 14
J. Garnaes, A. Kühle, L. Nielsen, and
F. Borsetto
Danish Institute of Fundamental
Metrology, Lyngby, Denmark
jg@dfm.dtu.dk

Chapter 15
L. Koenders¹ and F. Meli²
¹ National Metrology Institute (PTB),
Braunschweig und Berlin, Germany
² Swiss Federal Office of Metrology and
Accreditation (METAS),
Bern, Switzerland
Thorsten.Dziomba@ptb.de

Chapter 16
A. Grant, L. McDonnell, and
E. M. Gil Romero
Centre for Surface & Interface Analysis,
Department of Applied Physics &
Instrumentation, Cork Institute of
Technology, Ireland
lmcdonnell@cit.ie

Chapter 17
J. Schöbel and E. Westkämper
Institute of Industrial Manufacturing
and Management, University of
Stuttgart, Germany
ins@ipa.fraunhofer.de

Chapter 18
L. Koenders, T. Dziomba, P. Thomsen-
Schmidt, and G. Wilkening
National Metrology Institute (PTB),
Berlin/Braunschweig, Germany
Ludger.koenders@ptb.de

Chapter 19
S. Gröger and M. Dietzsch
Institute of Production Measuring
Technology and Quality Assurance,
Chemnitz, Germany
sophie.groeger@mb.tu-chemnitz.de
Chapter 20
R. Krüger-Sehm, T. Dziomba, and G. Dai
National Metrology Institute (PTB), Braunschweig, Germany
Rolf.Krueger-Sehm@ptb.de

Chapter 21
M. Senoner¹, Th. Wirth¹, W. Unger¹, W. Österle¹, I. Kaiander², R. L. Sellin², and D. Bimberg²
¹Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
²Institut für Festkörperphysik, Technische Universität Berlin, Germany
mathias.senoner@bam.de

Chapter 22
T. Machleidt, R. Kästner, and K.-H. Franke
Computer Graphics Program, Technical University of Ilmenau, Germany
Torsten.machleidt@tu-ilmenau.de

Chapter 23
S. Czerkas, T. Dziomba, and H. Bosse
National Metrology Institute (PTB), Braunschweig, Germany
slawomir.czerkas@ptb.de

Chapter 24
Center for Measurement Standards/ITRI, Taiwan, Republic of China
Gwo-sheng.peng@cms.tw

Chapter 25
V. Nascov
National Institute for Laser, Plasma and Radiation Physics, Bukarest, Romania
nv@ifin.nipne.ro

Chapter 26
G. Sparrer and A. Abou-Zeid
National Metrology Institute (PTB), Braunschweig, Germany
gerald.sparrer@ptb.de

Chapter 27
F. Meli
Swiss Federal Office of Metrology and Accreditation (METAS), Bern, Switzerland
Felix.meli@metas.admin.ch

Chapter 28
C. G. Frase, S. Czerkas, H. Bosse
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
Carl.g.frase@ptb.de

Chapter 29
C. G. Frase, W. Häßler-Grohne, E. Buhr, K. Hahn, and H. Bosse
National Metrology Institute (PTB), Braunschweig, Germany
Carl.G.Frase@ptb.de

Chapter 30
J. Flügge
National Metrology Institute (PTB), Braunschweig, Germany
Jens.Fluegge@ptb.de

Chapter 31
P. Bariani, G. Bissacco, H. N. Hansen, and L. De Chiffre
Department of Manufacturing, Engineering and Management, Technical University, Lyngby, Denmark
pbl@ipl.dtu.dk